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Abstract

Estimates of forest area were obtained for the states of Indiana, Iowa, Minnesota, and Missouri in the United States using stratified

analyses and observations from forest inventory plots measured in federal fiscal year 1999. Strata were created by aggregating the land cover

classes of the National Land Cover Data (NLCD), and strata weights were calculated as proportions of strata pixel counts. The analyses

focused on improving the precision of unbiased forest area estimates and included evaluation of the correspondence between forest/nonforest

aggregations of the NLCD classes and observed attributes of forest inventory plots, evaluation of the utility of the NLCD as a stratification

tool, and estimation of the effects on precision of image registration and plot location errors. The results indicate that the combination of

NLCD-based stratification of inventory plots and stratified analyses increases the precision of forest area estimates and that the estimates are

only slightly adversely affected by image registration and plot location errors. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The Forest Inventory and Analysis (FIA) program of

the Forest Service, U.S. Department of Agriculture, has the

responsibility for periodically estimating and reporting the

extent and volume of the timber resources of the United

States. To comply with its federal mandate, the FIA program

estimates extent through measures of forest area and esti-

mates volume as the product of area and volume per unit area

estimates. The forest area estimates are obtained using a

combination of plot and remotely sensed data, while the

volume per unit area estimates are obtained by measuring an

extensive network of permanent field plots.

One estimate of forest area reported by FIA is forestland

area. The FIA definition of forestland includes commercial

timberland, some pastured land with trees, forest plantations,

unproductive forested land, and reserved, noncommercial

forested land. In addition, forestland must satisfy minimum

stocking levels, a 0.405-ha (1 acre) minimum area, and a

minimum cumulative crown width of 36.58 m (120 ft) and,

therefore, excludes lands such as wooded strips, idle farm-

land with trees, and narrow windbreaks. FA is estimated as

the product of total area and mean proportion forestland

observed on FIA plots.

The combination of natural variability and budgetary

constraints prohibits measurement of a sufficient number

of plots to satisfy precision standards for estimates of most

inventory variables unless the estimation process is

enhanced using ancillary data. Traditionally, FIA has used

aerial photography and a two-phased approach incorporat-

ing double sampling for stratification to increase the pre-

cision of inventory estimates (Hansen, 1990; Loetsch &

Haller, 1964). In the first phase, an array of points or photo

plots on the aerial photographs is interpreted and stratified

using ocular methods, with the number of photo plots

assigned to strata used as proportional estimates of stratum

areas. In the second phase, field crews visit plots located at a

subset of the locations of the photo plots and obtain

observations of plot attributes. Using data obtained from

this double-sampling approach and stratified estimation

techniques (Cochran, 1977), regional estimates of forest

land area and the precision of the estimates are calculated.

2. Satellite imagery

The FIA program has sought alternatives to aerial photo-

graphs as means of increasing the precision of forest area
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estimates: (1) visual interpretation of the photographs is

labor intensive and often subjective; (2) the quality and

currency of the photographs are often inadequate; (3) the

photographs may be expensive to purchase; (4) the photo-

graphs are cumbersome to acquire, transfer, handle, and

store; and (5) consistent quality of interpretation with respect

to photo plots associated or not associated with field plots is

difficult to ensure. Increasingly, satellite imagery is being

viewed as an alternative to aerial photographs. The primary

advantages of this alternative are its digital format, border-to-

border coverage, and consistency.

As a means of increasing the efficiency and precision of

forest inventory estimation, satellite imagery has been used

with two approaches, regression and stratification. With the

regression approach, observations of a forest attribute

obtained from inventory plots and the spectral values of

pixels corresponding to these plots provide the basis for

regression models. The models are used to predict the value

of the attribute for all pixels in the area of interest, thus

producing a predicted distribution of the attribute. Area-wide

inventory estimates are obtained by summing or averaging

over the pixel-based predictions. Knowledge of the spatial

distribution of the spectral values of the pixels allows a

predicted map of the spatial distribution of the forest attribute

to be obtained also. In an estimation context, the map is a by-

product, although for other applications, the map itself may

be of primary interest, perhaps for identifying forested

locations with particular characteristics. Considerable inter-

national attention has been devoted to the development and

use of regression models for mapping and describing rela-

tionships between spectral values of satellite images and a

variety of forest attributes: hardwood and conifer cover in

Oregon, USA (Maiersperger, Cohen, & Ganio, 2001); height

and basal area in Scotland (Puhr & Donoghue, 2000);

biomass in Brazil (Steininger, 2000); volume in British

Columbia, Canada (Gemmell, 1995); age and structure in

the Pacific Northwest of the USA (Cohen, Spies, & Fiorella.,

1995); age in Estonia (Nilson & Peterson, 1994); age in

Colorado, USA (Nel, Wessman, & Veblen, 1994); biomass

in England (Danson & Curran, 1993); and volume in New

Brunswick, Canada (Ahern, Erdle, MacLean, & Kneppeck,

1991). Although developed for other purposes, these models

and maps may be used to predict distributions of forest

attributes of interest with the regression approach. Deppe

(1998) investigated use of the regression approach to enhance

estimation for forest area in Brazil and Bolivia, while Trotter,

Dymond, and Goulding (1997) did likewise for volume in

New Zealand. An increasingly popular variation of the

regression approach uses nearest-neighbors techniques in

lieu of regression models (e.g., Franco-Lopez, Ek, & Bauer,

2001;McRoberts, Franco-Lopez, Ek, &Bauer, 2000; Tokola,

2000; Tokola, Pitkanen, Partinen, & Muinonen, 1996;

Tomppo, 1991; Trotter et al., 1997). Two disadvantages of

the regression and nearest-neighbors approaches are fore-

most: First, bias in the inventory estimates may result if

bias in the regression models or nearest-neighbors tech-

niques produce biased predictions of the distribution of

the forest attribute; and second, the resources necessary

to obtain and register the satellite imagery and to

develop the models or nearest-neighbors relationships

may be substantial.

The stratification approach, sometimes characterized as

the direct expansion method, eliminates these disadvan-

tages, albeit with possibly less gain in precision. With this

approach, the satellite image is used to stratify the area of

interest by aggregating the area’s associated satellite image

pixels into homogeneous classes or strata. Values of invent-

ory variables obtained from plots assigned to the same strata

are also expected to exhibit a degree of homogeneity. If the

stratification is accomplished prior to sampling and the

within-stratum variances are known, then maximum pre-

cision may be achieved by designing the within-stratum

sampling intensity to be proportional to the within-stratum

variance. If the sampling intensity is independent of the

stratification, then considerable increase in precision may

still be achieved simply by using stratified analyses. Poso,

Hame, and Paananen (1984) and Poso, Paananen, and

Simila (1987) used the stratification approach with unsu-

pervised classifications to increase the precision of invent-

ory estimates of volume and age in Finland. The advantages

of the stratification approach over the regression and near-

est-neighbors approaches are that no resources are necessary

to develop the models or nearest-neighbors relationships

and, consequently, one potential source of bias in the

inventory estimates is eliminated.

Despite their advantages, satellite images may still be

expensive to obtain, register, and classify, even when used

only for stratification. However, image classifications and/or

maps do not necessarily need to be tailored to the specific

application in order to produce a precision increase for

inventory estimates. Hansen and Wendt (2000) used the

existing GAP classification (National Council of the Paper

Industry for Air and Stream Improvement [NCASI], 1996)

to increase the precision of inventory estimates of volume

and forest area for Indiana and Illinois, USA, thus eliminat-

ing the necessity of obtaining, registering, and classifying

the imagery.

A second large-scale classification, the National Land

Cover Data (NLCD), a digital product of the Multi-Resolu-

tion Land Characterization (MRLC) Consortium (Loveland

& Shaw, 1996), is a land cover map of the conterminous

United States consisting of assignment of each 30� 30-m

pixel to 1 of 21 land cover classes. The land cover

classification was produced by the U.S. Geological Survey

and was based on nominal 1992 Landsat 5 Thematic

Mapper (TM) satellite imagery and a variety of ancillary

data. Vogelmann et al. (2001) provide an excellent overview

and discussion of the NLCD. Numerous appealing attributes

of the NLCD make it an attractive alternative to aerial

photography: (1) digital format; (2) free and immediate

acquisition online (http://www.epa.gov/mrlc/nlcd.html); (3)

consistency; (4) no user image registration or classification
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requirements; (5) elimination of much of the labor-intensive

and subjective first phase of the double-sampling proced-

ure, because stratum weights may be obtained from simple

pixel counts; and (6) the border-to-border image coverage

of a state instead of photo points that constitute only a

sample. However, because the NLCD was not specifically

designed as a means of stratification for forest inventory

estimation, the correspondence of its classes to values of

inventory variables and its utility for increasing precision

require evaluation.

The objectives of the study focused on evaluating the

NLCD as a stratification tool for improving the precision of

FA estimates and were threefold: (1) to evaluate the corres-

pondence between the NLCD classes and plot attributes

observed by field crews; (2) to evaluate the utility of the

NLCD as a stratification tool; and (3) to estimate the effects

of uncertainty in the registration of the imagery underlying

the NLCD and uncertainty in plot locations on the precision

of FA estimates.

3. Data

Estimates of total FA for the states of Indiana (IN), Iowa

(IA), Minnesota (MN), and Missouri (MO) in the North

Central region of the United States were calculated using

field observations of proportion forestland for FIA plots

measured in federal fiscal year 1999 (FY99: October 1,

1998–September 30, 1999). Under the FIA program’s

annual inventory system (McRoberts, 1999), plots are

established in permanent locations using a systematic sam-

pling design. For each state, the plots measured in a single

federal fiscal year comprise one of five 20% panels of plots

selected for annual measurement on a rotating basis. Annu-

ally, each plot represents 12,014 ha (approximately

30,000 acres), while in aggregate, over a 5-year cycle, each

plot represents 2403 ha (slightly less than 6000 acres).

Calculations of area per plot indicate the annual target of

12,014 ha was approximately satisfied for these states for

FY99 (Table 1).

Each FIA field plot consists of four 7.31-m (24 ft)

radius circular subplots. These subplots are configured as a

central subplot and three peripheral subplots with centers

located at 36.58 m (120 ft) and azimuths of 0�, 120�, and
240� from the center of the central subplot. Among the

observations field crews obtain are the proportions of

subplot areas that satisfy specific ground land use con-

ditions. A plot-level estimate of proportion forestland is

obtained by aggregating proportions of several of these

ground land use conditions over the four subplots and

attributing the aggregated proportions to the plot as a

whole. In addition, for this study, each plot was assigned

to the NLCD land cover class associated with the pixel

containing the center of the central subplot.

4. Estimation

Because FIA uses a systematic sampling design with

permanent ground plots, maximizing the precision of

estimates via stratified random sampling is not an option.

Nevertheless, considerable increase in precision can still be

realized using stratified analyses if an effective stratifica-

tion can be implemented, albeit independently of the

sample selection. When using a systematic sampling

design and satellite imagery for stratification, estimates

of forest land area, FA, and associated estimates of

variance, Var(FA), may be obtained using formulae for

stratified analyses (Cochran, 1977):

FA ¼ A
XJ
j¼1

Wj P̂j ð1Þ

and

VarðFAÞ ¼ A2
XJ
j¼1

W 2
j ŝ

2
j =nj; ð2Þ

where A is total area; j= 1, . . ., J denotes stratum; Wj is the

weight for the jth stratum calculated as the ratio of the

number of pixels assigned to the jth stratum and the total

number of pixels for all strata; P̂j denotes the mean

proportion forestland for plots assigned to the jth stratum;

ŝj
2 is the within-stratum variance for the jth stratum

calculated as

ŝ2j ¼
1

nj � 1

Xnj
i¼1

ðPij � P̂jÞ2; ð3Þ

Pij is the proportion forestland observed by the field crew

for the ith plot in the jth stratum; and nj is the number of

plots assigned to the jth stratum. Variance estimates

obtained using Eq. (2) ignore the slight effects due to

finite population correction factors and to variable rather

than fixed numbers of plots per stratum. Two initial strata,

forest and nonforest, were created by aggregating the 21

NLCD land cover classes on the basis of their conformity

to categories of ground land use conditions that FIA defines

as forestland.

Precision estimates for forest area reported by the Forest

Service are scaled to compensate for varying sample sizes

associated with varying area sizes using a reference standard

Table 1

Statewide sample characteristics

State

Statistic IN IA MN MO

Total area (106 ha) 9.43 14.57 22.50 18.05

Plots measured in FY99 769 1223 1802 1504

Hectares/plot (target = 12,014) 11,913 12,262 12,473 12,001
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of 404,694 ha (1 million acres) (USDA Forest Service

[USDA-FS], 1970). The scaled precision estimate, denoted

as PREC for this study, is defined as

PREC ¼ ½VarðFAÞ�1=2

FA

FA

404; 694

� �1=2
; ð4Þ

where FA is expressed in hectares. The values of PREC

obtained from Eq. (4) were divided by the square root of 5

to reflect values that would be expected following complete

measurement of all five panels of plots over 5 years.

5. Methods

Investigations were conducted in three general areas: (1)

an assessment of the correspondence between the NLCD-

based forest and nonforest strata and plot attributes observed

by field crews; (2) an investigation of the stratification

utility of the forest and nonforest strata obtained by aggreg-

ating the NLCD land cover classes; and (3) and an assess-

ment of the effects of image registration and plot location

errors on the precision of forest land area estimates.

5.1. Correspondence between NLCD-based strata and

field observations

Although strata used for improving precision need not

correspond to familiar, well-defined classes, strata related to

the FIA definition of forestland were expected to have

greater utility for this application. Thus, the NLCD land

cover classes selected for aggregation to form the forest

stratum were those that were expected to conform most

closely to the FIA definition of forestland. Nevertheless, the

correspondence between the aggregation of NLCD land

cover classes and the condition classes of the FIA plots is

not expected to be exact. First, the NLCD classification was

based on a sensing of land cover, while the FIA condition

classes are based on land use and productivity observed by

field crews and exclude some lands with tree cover. Second,

the NLCD classification assigns each pixel to a single class,

while FIA summarizes the attributes of four FIA subplots

falling in three to four different pixels in terms of plot-level

proportions for multiple ground land use conditions. Third,

although the spectral attributes associated with a given pixel

may be affected by attributes of adjacent pixels, these effects

probably do not encompass 0.405 ha (1 acre) as is required

for land to be considered FIA forestland.

Despite the expected imperfect correspondence between

the NLCD land cover classes and the FIA condition classes,

the NLCD may still be an effective means of stratification.

An initial assessment of this potential was obtained using a

crude measure of the correspondence between two forest/

nonforest classifications of each plot: (1) the classification on

the basis of whether the NLCD land cover class of the pixel

containing the center of the center subplot was aggregated

into the forest or nonforest stratum; and (2) the classification

on the basis of whether the proportion forestland for the plot

observed by the field crew satisfied a minimum proportion

forestland threshold value necessary for the entire plot to be

designated forestland. Although a threshold value is neces-

sary for this analysis, such values are not prescribed by FIA,

and the selection of any such value is necessarily arbitrary.

Therefore, for proportion forestland thresholds ranging from

0.10 to 1.00, the correspondence between the two forest/

nonforest classifications was evaluated using graphs of the

proportion of plots correctly classified versus the proportion

forestland threshold values.

5.2. Stratification

As a means of improving the utility of the stratification,

the NLCD-based forest and nonforest strata were modified

with respect to three factors: (1) the particular NLCD classes

aggregated into the forest stratum; (2) reassignment of

isolated groups of small numbers of pixels to conform to

the forest or nonforest stratum in which they were embed-

ded; and (3) separation of edge strata of varying widths from

the forest and nonforest strata at forest/nonforest boundaries.

Two groupings of NLCD classes were investigated for

aggregation into the forest stratum. The first grouping

included NLCD Classes 33 (transitional),1 41 (deciduous

forest), 42 (evergreen forest), 43 (mixed forest), 51 (shrub-

land), and 91 (woody wetland) in the forest stratum and is

designated the total forest aggregation, because the forest

stratum included all NLCD classes that might be considered

forested classes. All other NLCD classes were grouped into

the nonforest stratum. The second grouping included only

NLCD Classes 41, 42, and 43 in the forest stratum and is

designated the pure forest aggregation, because the forest

stratum included only the NLCD classes that were known to

be forested. Analyses with the pure forest aggregation were

conducted only for IN and MN.

A clumping and sieving algorithm (ERDAS, 1997) was

used to reassign pixels in isolated groups of small numbers

of contiguous forest pixels to the nonforest stratum and

pixels in isolated groups of small numbers of contiguous

nonforest pixels to the forest stratum. Clumping and sieving

was done to remove isolated groups of less than four pixels

because of the approximate correspondence in area of four

pixels (3600 m2) to 0.4047 ha (4047 m2), the minimum area

necessary to be designated FIA forestland. Additional

investigations were conducted with no pixel reassignments

and with reassignments of isolated groups of eight pixels or

fewer, approximately 0.810 ha (2 acres).

As a means of improving the precision of the proportion

forestland estimates, three levels of stratification were

1 The correct numerical designation for the transitional class is 33; its

designation as 31 in Vogelmann et al. (2001) is attributed to a manuscript

error (Vogelmann, EROS Data Center, U.S. Geological Survey, personal

communication, 10 October 2001).
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considered: one stratum (i.e., no stratification), two strata,

and four strata. With a single stratum, the FIA plot data were

analyzed as if they had been obtained using simple random

sampling. Precision estimates obtained with this level of

stratification are used for comparison purposes only. For the

two-stratum approach, the forest and nonforest strata

obtained by aggregating NLCD classes were used. For the

four-stratum approach, two additional strata were created by

subdividing the forest stratum into forest and forest edge and

by subdividing the nonforest stratum into nonforest and

nonforest edge (Hansen & Wendt, 2000). These edge strata

were created by reassigning pixels in the original forest and

nonforest strata based on their distance from a forest/non-

forest boundary. Four distances or edge widths were inves-

tigated: one, two, three, and four pixels. Thus, for a two-pixel

distance, pixels in the original forest stratum within two

pixels of a nonforest pixel were reassigned to the forest edge

stratum, while pixels in the original nonforest stratum within

two pixels of a forest pixel were reassigned to the nonforest

edge stratum. For IA, a forest edge stratum was not separated

from the forest stratum because of the small number of

forested plots.

The rationale for creating the additional strata is based on

the knowledge that stratification with a systematic sampling

design contributes to increasing precision under two con-

ditions: (1) when within-stratum variances are smaller than

the overall variance and (2) when strata with large variances

represent relatively small proportions of the total population.

For this application, plots located in the interior of the forest

stratum and away from forest/nonforest boundaries are

expected to be predominantly forest, while plots located in

the nonforest stratum away from the forest/nonforest bound-

aries are expected to be predominantly nonforest. In both

cases, within-stratum variances are expected to be relatively

small, thus satisfying the first condition for which stratifica-

tion reduces variance estimates. Plots located in an edge

stratum, i.e., near forest/nonforest boundaries, are expected

to exhibit greater variances due to a mix of forest and

nonforest conditions on the plots and due to the greater

probability of errors in assigning plots to strata. Neverthe-

less, the stratification is also expected to concentrate these

erroneously stratified and mixed forest/nonforest plots into

strata that represent relatively small proportions of the total

area, thus satisfying the second condition for which strati-

fication produces reductions in variance estimates.

Detailed analyses of the utility of the stratification were

conducted for the total forest aggregation for all four states,

for all levels of clumping and sieving, for all levels of

stratification, and for all edge widths for the four-stratum

approach. Similar analyses were conducted for the pure

forest aggregation, but only for IN and MN, only for four-

pixel clumping and sieving, and only for two-pixel edge

widths when the four-stratum approach was used.

The effects of clumping and sieving were compared with

respect to the precision of estimates, but only for the total

forest aggregation. However, because of the intensive pro-

cessing requirements that would be necessary to create

edges around all isolated groups of small numbers of pixels,

no edge strata were created in the absence of clumping and

sieving. Thus, for the one-stratum (no stratification)

approach, the effects of all three levels of clumping and

sieving were compared; for the two-stratum approach, the

effects of all three levels of clumping and sieving were again

compared; but for the four-stratum approach, only the

effects of the four- and eight-pixel levels of clumping and

sieving were compared.

5.3. Location errors

The effects of image registration errors and plot loca-

tion errors on the precision of proportion forestland

estimates for the four-stratum approach with two-pixel

edge widths were approximated using simulations. The

precision of image registration is usually assessed using

the root mean square error (RMSE) where errors are

defined as differences between the known locations of

ground control points and the locations of the same points

on the image after registration. Registration precisions

corresponding to RMSE values of one half pixel are

usually deemed acceptable. Thus, the magnitude of the

image registration error was simulated with a Gaussian

distribution with zero mean and standard deviation of 15 m

(half the width of a 30-m square pixel), but restricted to

fall within 0.0–2.5 standard deviations. The direction of

the error was simulated using a uniform distribution with

range 0–359.99�.
A study by the USDA Forest Service to evaluate the bias

and precision of GPS receivers reported that for receivers of

the kind used by FIA field crews, average errors were

approximately 7.9 m with maximum errors of approxi-

mately 20 m (Jasumback, 1996). Thus, the magnitude of

the plot location error was simulated using a Gaussian

distribution with zero mean and standard deviation 8.0 m,

but restricted to fall within 0–2.5 standard deviations. The

direction of the plot location error was simulated using a

uniform distribution with range 0–359.99�. The resulting

distribution of simulated plot location errors was concentric

around zero with decreasing spatial density as the mag-

nitude of the error increased (Fig. 1).

The effects of image registration and plot location errors

on PREC were approximated using the following five-step

Monte Carlo simulation procedure.

(1) Image registration error. A simulated image registra-

tion error was generated by randomly selecting magnitudes

and directions from the distributions previously described.

The location of each pixel in the NLCD was offset by this

same random registration error.

(2) Plot location error.A simulated plot location error was

generated for each plot by randomly selecting magnitudes

and directions from the distributions previously described.

The location of each FIA plot center was offset by a random

location error generated individually for the plot.
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(3) Stratification. The FIA plots were restratified by

assigning each plot to the stratum of the NCLD pixel with

center (with image registration error) nearest the plot center

(with location error).

(4) Estimation. Statewide estimates of FA and the var-

iances of the FA estimates were obtained for the four-

stratum approach with two-pixel edge widths using Eqs.

(1)–(3). For each state, PREC was calculated using Eq. (4).

(5) Repetition. Steps 1–4 were repeated 1000 times to

generate distributions of PREC estimates for comparison

with the PREC values obtained from the original data.

6. Results

6.1. Correspondence between NLCD-based strata and

field observations

Graphs of the proportion of plots correctly classified

versus the proportion forestland threshold values indicated

that for the total forest aggregation and four-pixel clumping

and sieving, the greatest proportions correctly classified for

MN and MO, the two relatively heavily forested states,

ranged from 0.85 to 0.91 and were obtained for threshold

values of 0.2–0.5, while the greatest proportions correctly

classified for IN and IA, the two relatively sparsely forested

states, ranged from 0.92 to 0.95 and were obtained for

threshold values of 0.5–0.8 (Fig. 2). For no clumping and

sieving, the graphs were similar, but the proportions cor-

rectly classified were slightly lower, while for eight-pixel

clumping and sieving, the graphs were also similar, but the

proportions correctly classified were slightly higher. For the

pure forest aggregation with four-pixel clumping and siev-

ing, the graphs were similar in shape to those for the total

forest aggregation, although proportions correctly classified

were slightly lower for IN and much lower for MN, the only

two states considered. Overall, the proportions correctly

classified were similar to results reported by Rack (in press)

and Riemann, Hoppus, and Lister (2000). These results

indicate that aggregations of NLCD classes into forest and

nonforest strata have excellent potential to function as an

effective means of stratification and that positive results

accruing from stratifications based on these aggregations

may be attributed to this strong correspondence rather than

to spurious or random effects.

6.2. Stratification utility

For the total forest aggregation, four-pixel clumping and

sieving, and a two-pixel edge width, the within-stratum

estimates indicate that the objectives of stratification are

achieved (Table 2a and b). For the two-stratum approach,

the within-stratum standard errors were either smaller than

overall standard errors as represented by the estimates for

the approach with no stratification, or the weights assigned

to strata with larger standard errors were smaller. For the

four-stratum approach, the forest and nonforest within-

stratum standard errors were smaller than the corresponding

two standard errors, and the weights for the more variable

edge strata were much smaller than the weights for the forest

and nonforest strata from which they had been separated.

The overall standard errors obtained for the two-stratum

approach were smaller than those obtained without strati-

fication, while the overall standard errors for the four-

stratum approach were smaller than those obtained with

the two-stratum approach.

A comparison of the total and pure forest aggregations

with respect to their effects on the utility of the stratification

was restricted to IN and MN, four-pixel clumping and

sieving, and two-pixel edge widths when the four-stratum

approach was used. For IN, the two aggregations produced

Fig. 2. Correspondence between NLCD-based forest and nonforest strata

and proportion forest land observed by field crews.

Fig. 1. Distribution of simulated plot location errors.
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similar results, but for MN the total forest aggregation

produced greater precision (Table 2a and b). ForMN, shifting

NLCD Classes 33, 51, and 91 from the forest to the nonforest

stratum had several detrimental effects. First, as expected,

combined weights for the nonforest and nonforest edge strata

increased, and the within-stratum means of proportion forest-

land increased for all strata. In addition, within-stratum

standard errors increased substantially for the nonforest and

nonforest edge strata, while they decreased for the forest and

forest-edge strata. Because weights for the nonforested strata

were greater than for the forested strata, the combined effects

of increasing weights and increasing within-stratum standard

errors for the nonforest strata produced greater overall stand-

ard errors for both the two- and four-stratum approaches. The

effects on PREC were similar to those for the within-stratum

estimates. For IN, the differences in PREC were small for the

two aggregations, but for MN, they were relatively large.

When NLCD Classes 33, 51, and 91 for MN were shifted to

the nonforest stratum, PREC increased from 0.0389 to 0.0495

for the two-stratum approach and from 0.0362 to 0.0470 for

the four-stratum approach with two-pixel edge widths, both

with four-pixel clumping and sieving. These detrimental

effects are attributed to the observation that substantial areas

of forestland inMN are in wet, lowland areas and indicate that

care must be exercised in selecting NLCD classes to aggreg-

ate into the forest and nonforest strata.

The effects on PREC of increasing levels of stratification

were generally beneficial for all levels of clumping and

sieving (Table 3). The effects of stratification may be

assessed in terms of relative efficiency, the factor by which

sample sizes would have to be increased to achieve the same

precision without stratification. Because PREC is propor-

tional to n� 1/2, where n is sample size, relative efficiencies

may be calculated as the square of the ratio of PREC for the

levels of stratification being compared. Relative efficiencies

for no stratification and for the two-stratum approach ranged

Table 2

(a) Estimates for proportion forest land for forest stratum consisting of NLCD Classes 31, 41, 42, 43, 51, and 91a

IN IA MN MO

Stratum Wj P̂j

ŝ2j
nj

� �0:5

Wj P̂j

ŝ2j
nj

� �0:5

Wj P̂j

ŝ2j
nj

� �0:5

Wj P̂j

ŝ2j
nj

� �0:5

One-stratum (no stratification)

Allb 1.0000 0.1716 0.0127 1.0000 0.0552 0.0059 1.0000 0.2914 0.0104 1.0000 0.3312 0.0114

Two-stratum

Nonforest 0.8010 0.0463 0.0070 0.9176 0.0166 0.0030 0.6516 0.0369 0.0049 0.6152 0.0568 0.0067

Forest 0.1990 0.7153 0.0338 0.0824 0.5139 0.0452 0.3484 0.7733 0.0156 0.3848 0.7355 0.0158

Allb 1.0000 0.1794 0.0088 1.0000 0.0575 0.0046 1.0000 0.2935 0.0063 1.0000 0.3180 0.0074

Four-stratum with two-pixel edge width

Nonforest 0.6546 0.0080 0.0028 0.8128 0.0018 0.0011 0.5377 0.0067 0.0021 0.4183 0.0078 0.0032

Nonforest edge 0.1465 0.2112 0.0311 0.1048 0.1258 0.0218 0.1139 0.1607 0.0216 0.1969 0.1693 0.0193

Forest edge 0.1060 0.5701 0.0502 – – – 0.0991 0.5587 0.0343 0.1533 0.5125 0.0274

Forest 0.0930 0.8905 0.0323 0.0824 0.5139 0.0452 0.2493 0.8541 0.0156 0.2315 0.8800 0.0149

Allb 1.0000 0.1795 0.0078 1.0000 0.0570 0.0045 1.0000 0.2902 0.0058 1.0000 0.3189 0.0068

(b) Estimates for proportion forest land for forest stratum consisting of NLCD Classes 41, 42, and 43a

IN MN

Stratum Wj P̂j

ŝ2j
nj

� �0:5

Wj P̂j

ŝ2j
nj

� �0:5

One-stratum (no stratification)

Allb 1.0000 0.1716 0.0127 1.0000 0.2909 0.0104

Two-stratum

Nonforest 0.8188 0.0552 0.0075 0.7885 0.1528 0.0091

Forest edge 0.1812 0.7324 0.0340 0.2115 0.8370 0.0175

Allb 1.0000 0.1754 0.0087 1.0000 0.2975 0.0081

Four-stratum with two-pixel edge widths

Nonforest 0.6746 0.0086 0.0032 0.6446 0.1007 0.0086

Nonforest edge 0.1442 0.2939 0.0323 0.1440 0.3664 0.0269

Forest edge 0.1000 0.6119 0.0489 0.1179 0.7401 0.0281

Forest 0.0811 0.9023 0.0334 0.0936 0.9540 0.0139

Allb 1.0000 0.1747 0.0076 1.0000 0.2942 0.0076

a Four-pixel clumping and sieving.
b Estimates over all strata.
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from 1.68 to 2.71, meaning that samples sizes would have to

be increased by 68% to 171% to achieve the same precision

without stratification. Relative efficiencies for no stratifica-

tion and the four-stratum approach with optimal edge widths

ranged from 1.78 to 3.93, meaning that sample sizes would

have to be increased by 78 to 293% to achieve the same

precision without stratification. The magnitudes of these

relative efficiencies indicate that the NLCD has considerable

utility as a means of stratification; i.e., the effort to obtain the

NLCD classification, to complete the clumping and sieving

operation, to select and aggregate the classes into forest and

nonforest strata, and to create the edge classes is justified in

terms of the realized gain in precision.

Given the four-stratum approach, i.e., that edges were at

least one pixel in width, the effects on PREC of increasing

edge widths were not great. Minimum values of PREC were

usually achieved for either one- or two-pixel edge widths for

both four- and eight-pixel clumping and sieving, while

PREC values for 4-pixel edge widths were generally greater

than for smaller edge widths.

The effects of clumping and sieving on PREC were also

not great. For IA, MN, and MO, PREC values correspond-

ing to optimal edge widths were slightly smaller for eight-

pixel clumping and sieving, although for IN, the smallest

PREC value was achieved for four-pixel clumping and

sieving. However, the differences in PREC for the optimal

edge widths for four- and eight-pixel clumping and sieving

were relatively small.

6.3. Effects of location errors

The simulations showed that the combined effects of

simulated image registration errors and plot locations errors

were only slightly detrimental (Table 4). These combined

effects caused the center of the central subplot to change

pixel locations for approximately 15% of plots, regardless of

the state. However, a change of pixel location did not

necessarily result in a change in stratum assignment. For

the four-stratum approach with two-pixel edge widths, the

proportion of plots that changed stratum assignments was

less than 0.025 for all strata in all states. For all four states,

the values of PREC calculated from the original data were

smaller than and exterior to the central 95% of the simulated

distributions, indicating that the impacts of the location

errors were detrimental and statistically significant. Never-

theless, the absolute magnitudes of differences between the

original PREC values and the medians of the simulated

distributions were not great.

7. Conclusions

Four conclusions may be drawn from the study: (1) The

high levels of correspondence between the forest and non-

forest strata obtained by aggregating NLCD land cover

classes and plot attributes observed by field crews indicate

that stratification benefits obtained by using aggregations of

the NLCD classes may be attributed to real relationships,

not simply spurious or random effects. (2) The NLCD

provides an effective means of stratification when its classes

are aggregated into forest and nonforest strata. (3) The

separation of forest and nonforest edge strata from the

original forest and nonforest strata enhances the effective-

ness of the stratification. (4) The effects of image registra-

tion errors and plot locations errors on the precision of forest

area estimates are slightly detrimental, although the overall

impacts are nearly negligible. In addition, the inclusion of

NLCD Classes 33, 51, and 91 in the forest stratum improved

the precision of estimates for MN, a state with considerable

forestland in wet, lowland areas, but not for IN. The effects

of varying edge widths when separating the forest and

nonforest edge strata were not great, although one to two

pixel edge widths were usually optimal, while four-pixel

widths were generally less than optimal. The effects of

clumping and sieving on precision were also not great.

A general recommendation is to construct strata as

follows: aggregate NLCD Classes 33, 41, 42, 43, 51, and

Table 4

Effects of locations errors on PREC (Eq. (4))a

PREC

IN IA MN MO

No location errors 0.0400 0.0502 0.0362 0.0358

With simulated location errors

0.025 percentile 0.0416 0.0540 0.0379 0.0367

Median 0.0430 0.0592 0.0386 0.0374

0.975 percentile 0.0442 0.0663 0.0393 0.0380

a Forest stratum: NLCD classes 31, 41, 43, 51, 91; 4-pixel clumping

and sieving; 4-strata with 2-pixel edge width.

Table 3

Effects of stratification on PREC (Eq. (4))a

PREC

Number of strata Edge width IN IA MN MO

No clumping and sieving

1 0 0.0663 0.0671 0.0642 0.0595

2 0 0.0465 0.0540 0.0390 0.0403

Four-pixel clumping and sieving

1 0 0.0662 0.0670 0.0641 0.0593

2 0 0.0447 0.0517 0.0382 0.0390

4 1 0.0334 0.0515 0.0362 0.0355

4 2 0.0400 0.0502 0.0362 0.0358

4 3 0.0414 0.0509 0.0364 0.0352

4 4 0.0419 0.0515 0.0371 0.0361

Eight-pixel clumping and sieving

1 0 0.0663 0.0671 0.0642 0.0595

2 0 0.0438 0.0501 0.0379 0.0386

4 1 0.0369 0.0503 0.0358 0.0358

4 2 0.0415 0.0488 0.0358 0.0315

4 3 0.0419 0.0503 0.0358 0.0349

4 4 0.0420 0.0561 0.0359 0.0360

a Forest stratum: NLCD Classes 31, 41, 42, 43, 51, 91.
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91 into the forest stratum; use four-pixel clumping and

sieving to conform approximately to the FIA requirement

that forestland must comprise at least 0.405 ha; and create at

least four strata (nonforest, nonforest edge, forest, forest

edge) using two-pixel widths for edge strata. The general

conclusion is that the use of proportion forestland observed

on FIA plots in conjunction with the NLCD as a stratifica-

tion tool and stratified analyses is an effective method for

obtaining statewide forest land area estimates.
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